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DEPTH OF PENETRATION OF SOLID PARTICLES INJECTED INTO A GAS FLOW 

L. Kh. Garmize, V. K. Popov, 
S. P. Fisenko, and 8. I. Shabunya 

UDC 532.582.92 

The depth of penetration of a spherical particle into a uniform transverse flow 
was determined experimentally and theoretically for both a continuous medium and 
a free molecule flow. 

In solving a number of practical problems of two-phase hydrodynamics, it is often 
necessary to determine the depth of penetration of particles introduced into the flow. 

Let us examine this problem for a continuous medium. Thefollowing classical ex- 
pression for depth of penetration S is known for small Reynolds numbers Re << i: 

S - ppd~V~ 
18~ 

However, S is independent of the velocity of the transverse flow and, as was shown in [i], 
when Re > i substantial corrections of (i) are necessary to determine the penetration 
depth. 

Let us choose a coordinate system such that the x axis will be perpendicular to the 
flow and the y axis will be parallel to the flow. Then the equations of motion of the 
particles will have the following form: 

dx 
~- Vp, 

dt 

dVp __ 3CDRe~  Vp, 

dt 49pd z 

dUp _ 3CoRe  ~ ( U q - -  Up), 
dt 4ppd 2 

with the initial conditions t = 0, Vp = Vo, x = 0, and Up = 0. 
of the Reynolds number 

Re - pqd [(Uq - -  Up) z -~. V~] I/2 

We w i l l  e v a l u a t e  t h e  b r a k i n g  d i s t a n c e  on t he  b a s i s  o f  (2) and (3 ) .  The b r a k i n g  t ime 
and distance S are equal to the following, respectively, in order of magnitude 

Vp 

dt t=o 

ppd 2 

�9 Co(Reo)  Reo~ ' 

(i) 

(2) 

(3) 

(4) 

The quantity CD is a function 

S " V o ~ =  . 9~dzV~ (5) 
CD(Reo) Reo~ 
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Considering that PP~ i, the exact expression for S may be written in the form 
Pq 

S - Ppd2V~ f(Reo).  (6) 
It 

Here,  t h e  form o f  t he  f u n c t i o n  f (Reo)  s h o u l d  be d e t e r m i n e d  from e i t h e r  a n u m e r i c a l  o r  a 
f u l l - s c a l e  e x p e r i m e n t .  

~e experimental unit (Fig. i) consisted of a nozzle i, a water supply system 2, and 
a device for introducing the particles into the flow 3. To measure S, we determined the 
trajectory of the particles in the gas flow by photographing them with the aid of a stro- 
boscope. The frequency of the stroboscope was varied in relation to the velocity of the 
gas flow. We took for the braking distance S the projection, on the normal to the flow 
axis, of the section of the trajectory from the point of impact with the flow A to the 
lowest point of the trajectory B -- where Vp = 0. The scale of the image was established 
by photographing a standard which was placed in the plane of impact of the particles. We 
ensured a uniform transverse flow by using the initial section of the planar turbulent jet, 
with the nozzle width having been many times greater than the particle diameter. 

System of equations (2)-(4) was solved numerically. We used Klyachko's empirical 

formula CD='Z--~4(Ii4~ei/3) [2] to assign the explicit form of the function CD(Re) , but as- 
o ~ e  

s~med that C D = 0.4 = const at Re :~ i0 3 [3]. Figure 2a shows the function f(Reo) obtained 
as a result of the experiment and numerical calculation. It can be seen that the braking 
distance is very slightly dependent on the Reynolds number Re at Reo ~ 2000 and that the 
experimental results agree well with the numerical solution of system (2)-(4). 

The penetration of a spherical particle into a transverse free molecule flow, when 
Kn = %/d >> 1 [4], is also of interest. Here, it is natural to ignore the perturbing effect 
of the sphere on the state of the gas flow. We will examine first the penetration of the 
sphere into a quiescent gas. We will choose a coordinate system such that the x axis is 
directed along the direction of motion of the sphere. Then the equations of motion will 
have the form 

dx _ Vp, -dVp _ 6 Fc, (7) 
dt dt appd a 

with the initial conditions t = 0, x = 0, Vp = Vo. The quantity F c is the drag, equal to 
the following [5]: 

4m ] / a  e 2e j 

I t  i s  assumed t h a t  t h e  r e f l e c t i o n  o f  m o l e c u l e s  f rom the  s p h e r e  i s  i d e a l l y  e l a s t i c  i n  
c h a r a c t e r .  I n  t h i s  c a s e ,  t h e  dep th  o f  p e n e t r a t i o n  o f  t he  p a r t i c l e s  i s  e q u a l  to  t h e  d i s t a n c e  
in which the velocity of the particles Vx falls from the initial value to the thermal veloc- 

ity, equal to I/ 6iT 
V ad3pp 

At co < i, the following analytical expression for depth of penetration can be obtained 
from the equations of motion 

S ppVOdpq / ~m ~ mV~ ) I /  I-- �9 (8) 
30kT 

The solution of the equations of motion of particle (7) are shown in Fig. 2b for 0 
r ~ 7. It should be noted that if the reflection of the gas molecules from the sphere is 
diffuse in nature, then the depth of penetration is doubled. In the case of vaporized par- 
ticles, the results obtained can serve as an estimate of the penetration depth -- since S is 
directly proportional to d. 

Let us examine the case where the gas is moving at a velocity U. We will change over 
to a coordinate system which is stationary with respect to the gas. Then the spherical 

particle will have a velocity which in absolute value is equal to Vo = VU#~ V~. Here, 
V0/~0=co s ~. To determine the depth of penetration S:, we can use the results already 
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Fig. i. Set-up of experiment. 
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Fig. 2. Dependence of dimensionless depth of 
penetration of particles: a) on Reynolds 
number (i- numerical calculation; 2- exper- 
iment); b) on ratio of particle velocity to 
thermal velocity of molecules. 

obtained for a quiescent gas but substitute Vo for Vo. Then the penetration depth along the 
x axis will be equal to 

S = S~ cos ~. 

To determine the order of magnitude of the depth of penetration of solid particles into 
a gas flow, we obtained numerical estimates using the data in [4]. Thus, with pq = 5"I0 -s 
kg/cm 3, T = 200~ Pp = 500 kg/m 3, Uq = 2500 m/see, and d = l~m, the depth of penetration of 
the particles into the flow is 1.2'10 -3 , 2.9'10 -3 , and 5.9'10 -3 m for particle velocities 
Vo = 200, 500, and i000 m/see, respectively. 

NOTATION 

pp, particle density, kg/m3; d, particle diameter, m; ~, viscosity of gas, kg/m. see; t, 
time, sec; Vp, particle velocity across the direction of flow of the gas, m/see; Up, par- 
ticle velocity in the direction of flow of the gas, m/see; pq, density of gas; k, Boltzmann's 
constant; T, absolute temperature, ~ m, mass of gas molecule; ~ = i, accommodation coeffi- 

8 

cient; k, mean free path of gas molecules. ~ = P m 

0 
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